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Mutations in Paternity 
When a paternity test shows that a man is eligible to be the father at all but one locus, 
or all but a few loci, we consider the possibility that he may be the father but that a 
mutation (or maybe a few) has occurred. 
The "two exclusion" rule 
If the genetic pattern is inconsistent with paternity at one locus (often called an 
"exclusion", but that's a poor choice of word if you end up not excluding!) was 
traditionally (e.g. in serological times) not regarded as a demonstration of non-
paternity, because of the possibility of mutation. However, mutations are quite rare in 
the traditional systems, so two inconsistencies were enough to exclude - to issue a 
judgement of non-paternity. 
... and RFLP 
The two-exclusion rule seems adequate for RFLP testing. However, it is not a good 
idea simply to ignore the inconsistent locus. A paternity index should be calculated for 
the locus, which takes into account the possibility of mutation. 
... and STR 
If a battery of a dozen STR systems is used for paternity testing, occasionally two 
inconsistencies can be expected even when the man is the father. On the other hand, 
we can also expect occasionally to see only two inconsistencies when the man 
is not the father. 
Therefore calculating a paternity index for mutation is vital. 
Treatment of mutations 
If two inconsistent loci are deemed (nearly) enough to rule "exclusion" for the whole 
case, in effect two inconsistent loci together amount (nearly) to a combined PI=0. One 
inconsistent locus therefore deserves a very small PI, 0<PI«1. 
RFLP Approach 



For RFLP's, I use the simple formula PI=n, where [i is the observed rate of 
mutations/meiosis for the locus, when a locus shows a result inconsistent with 
paternity. 
The rule that PI=n is based on this simple model of mutation, assuming for the sake of 
illustration an obligatory paternal gene of Q: 
X = P(man without gene Q will contribute Q) 
= P(contributed gene will mutate) P(mutated gene will be a Q) 
= n P(Q). 
Y = P(random sperm is Q) = P(Q). 
X/Y=n. 
That is, the model assumes that the chance a gene will mutate to Q is proportional to 
the prevalence of Q genes in general, without regard to such possible complications as 
different probabilities for a small vs. a large or positive vs. negative mutation size 
change. 
AABB formula for mutations 
The AABB recommends a slightly different formula, for my facile analysis above is 
wrong. The evaluation of Y is slipshod. Better is 
Y = P(paternal gene is Q and man has no Q) 
= P(paternal gene is Q) • P(man has no Q) 
= P(Q) • A 
X/Y = n/A, 
where A is the probability of exclusion; the probability that a random man would have 
a pattern inconsistent with paternity at this locus. The extra complication does not 
change the result very much (since normally A is nearly 1) and the relative 
improvement is anyway dwarfed by the inherent inaccuracy of the method for 
estimating X. 



The AABB however uses not the case-specific power of exclusion. A, but the mean 
power of exclusion, A . I'm not sure why, but in either case the formula is correct on 
average (which mine is not), and in neither case is any of the three formulas anywhere 
near accurate. 
Late breaking news: I have been told that as of December 2004 the official AABB 
recommendation is the model discussed on this page. 
Later: But when I looked they seem equivocal, accepting of either my method or of 
"Fimmers" which would be the old RFLP way. 
Mutation formulas not accurate 
The general rule is that mutations change allele length by a small amount. Thus when 
the man mismatches the child allele by a small amount there is a lively chance of a 
mutation but the formula underestimates it, tending to help true fathers get off the 
hook. Conversely, when the alleles mismatch by a large amount, the same 
computation unfairly inflates the possibility of a mutation, perhaps unfairly 
overstating the evidence against a non-father. 
Nonetheless, as regards RFLP, I don't have a better formula to suggest. Vigilance. 
STR Approach 
In the case of STR systems I think we can do a little better. For example, Brinkmann 
et al reported that of 23 STR mutations found, 22 were by a single step; one by a 
double step. Fourney et al (private communication) have similar experience, and 
mention that length-increasing and length-decreasing mutations are about equally 
frequent. 
Therefore as a rule of thumb I suggest assuming that 

• 50% of all mutations increase by one step 
• 50% decrease by one step 
• 5% increase by two steps 
• 5% decrease by two steps 
• 0.5% increase by three steps 
• 0.5% decrease by three steps 
• ... etc. 

Never mind that these numbers add to more than 100%! 
STR Formulas 



Typical case 
Unlike the RFLP case, the formula will depend on the actual alleles and 
possible patterns of sharing. Instead of trying to give a general treatise, I'll just 
illustrate with one typical example. 
Suppose the mother is PP, the child is PQ, and the man is Q'R, where Q' is s=l 
or 2 steps smaller (or larger) than Q. As usual, let |i be the overall mutation rate 
for the locus, measured in mutations/meiosis. 
Then X = P(genotypes | true trio) is proportional to 
P(Q'R man transmits Q) = P(Q' is transmitted) x P(mutation) x P(mutation 
increases length) x P(s steps) 
= (1/2) n (1/2) (l/lO)8'1, and 
Y = P(genotypes | false trio) is proportional to 

Note Apr 2010 This model is almost the same as the 1994 model of Di Rienzo et 
al (link above). 
P(Q), the frequency of the Q allele among random sperm. 
Therefore I propose the approximations that the paternity index X/Y = |i / (4 
P(Q)) if the mutation is 1 step, 
X/Y = /(40 P(Q)) if the mutation is 2 steps, etc. 
Please note that the above formula is just an example and the formula would be 
different if the genotype patterns were different, or if the model parameters 
were different (e.g. 2-step mutations may be 20 times rarer than 1-steprather 
than 10 times rarer). 
More examples of STR Formulas 
mother ) child tested man formula remark 

PP [ P Q Q'R 
¡J. / (4 PQ) if the mutation is 
1 step, \i /(40 PQ) if the 
mutation is 2 steps, etc. 

17 17 18 19 JI/(2PI 8 ) 
12 14 12 14 15 16 H/(4(Pl2 + Pl4) ambiguous paternal allele 
12 14 12 14 13 15 3h/4(PI 2 + PI4) 3 possible paternal 

mutations 



15 16 15 17 15 16 JI(1+1/3s5)/(4P17) paternal or (less likely) 
maternal mutation 

none 20.2 23 21.2 23.2 H / (8 P20.2) 
23.2 -> 23 mutation too 
rare to consider none 20.2 23 21.2 23.2 H / (8 P20.2) 
( s e e Lower bound) 

father child tested woman 

17 17 18 19 H / (2*3i5* Pis) maternity case 

Strange example - mutation without ji 

mother child 
tested 
man 

formula remark 

12 15 13 16 16 I/CP16 + P13) . 

Since same (maternal) mutation possibilities 
are involved in both numerator and 
denominator of the LR formula, the n's cancel 
and it is the same formula as if mother=child 
(i.e. no mutation). 
Thanks to LiHaiXia of Sun Yat-Sen 
University for a correction. 29July2009 

12 14 13 15 15 l/(Pi5+Pn/2) 

Again the jx's all cancel because both 
numerator and denominator require maternal 
mutation. But there are 3 possible mutations 
for the denominator and only 2 for the 
numerator. So this case is not equivalent to 
any "no-mutation" pattern. 


